Digitale Produktentwicklung – Additive Fertigung

Bei der digitalen Produktentwicklung im Ventilatorenbau erschließen sich dem Entwickler ganz neue Möglichkeiten, um anforderungsgerechte, hocheffiziente Laufräder mit räumlich gekrümmten Schaufeln für hochtourige Ventilatoren zu konzipieren. 

Stellten bisher noch für den Entwickler bei dem klassischen Ventilatorenbauer fertigungstechnische Voraussetzungen eng gesetzte Formgebungszwänge, sowie knappe Budgetrahmen bei der Neuentwicklung kundenauftragsbezogener Individualprodukte unüberwindbare Hindernisse dar, zeigen heute Lösungsansätze wie der „Digitale Ventilatoren-Prüfstand“ und die „Additive Fertigung“ Wege zur Realisierung auf.  

Während ich in meinem Beitrag „Von der digitalen Produktentwicklung zum erweiterten Geschäftsmodell“ bereits ausführlich über die Chancen und kommerziellen Vorteile eines entwickelten „Digitalen Ventilatoren-Prüfstand“ berichtet und hierin aufgezeigt habe wie der Entwickler und Anbieter einer derartigen SaaS-Lösung auf einer entsprechenden Plattform auch hiermit monetäre Ziele verfolgen kann, zeigt der Markt auch der Fertigungsindustrie gleiche Zielsetzung auf. 

Auf der Suche nach Umsetzungsmöglichkeiten seiner digital entwickelten Ideen bieten heute bereits einige Firmen Dienste der Additiven Fertigung an. Schöne Beispiele hierzu liefern die Plattform mipart.com der Firma BAM GmbH, aber auch die Firma Mark 3D GmbH, um nur zwei Anbieter von vielen zu nennen. Gerade auch bei kundenauftragsbezogenen Individualprodukten bietet sich die Additive Fertigung oder auch Additive Manufacturing (AM) als Fertigungsverfahren an. So bietet z.B. pulverbasiertes Schmelzen mit einem Laser, wie dem Selektive Lasersintern (SLS) oder Selektive Laserschmelzen (SLM) bei dem der zu verarbeitende Werkstoff in Pulverform in einer dünnen Schicht auf einer Grundplatte aufgebracht und mittels Laserstrahl entsprechend einer programmtechnisch vorgegebenen Bahn Schicht für Schicht lokal vollständig umgeschmolzen wird, eine kostengünstige Möglichkeit die Laufräder aus extremen Materialien herzustellen. Eine weitere innovative Technologie um Metall zu drucken zeigt der Metal X von Mark3D auf. In der Atomic Diffusion Additive Manufacturing kurz ADAM-Technologie besteht das Druckmaterial aus Kunststoff und einem Metallpulver in sehr hoher Konzentration. Gedruckt wird dann im FFF-Verfahren (Fused Filament Fabrication) – komplett ohne giftigen Metallstaub. Darauf folgt der Sinterprozess und das Ergebnis ist ein über Nacht gefertigtes Metallteil. Durch den Sinterprozess erfolgt eine Atomare Diffusion. Durch die Hitze verschieben sich die Atome leicht und verkleben. Dadurch erreichen die Bauteile hervorragende mechanische Eigenschaften und eine enorme Steifigkeit auch in z-Richtung. 

Von reinem Kupfer über Edel- und Werkzeugstähle bis hin zu Inconel 615 oder in naher Zukunft auch Titanlegierungen.

Aber auch aus Werkstoffen wie dem Polyamid PA12 lassen sich beispielsweise mit der sogenannten Multi Jet Fusion Technologie (eine 3D Druck Technologie von HP) entsprechende Laufräder mit räumlich gekrümmten Schaufeln herstellen. 

Mit der Continuous Filament Fabrication kurz CFF-Technologie, ein Verfahren, das die Mark3D GmbH einsetzt, lassen sich sogar Laufräder aus ONYX (PA6 mit 15% Carbonfaseranteil) in Verbindung mit einer Carbon-Endlosfaser herstellen.

Mit anderen Worten, der Entwicklung von extrem hochtourigen Turbo-Laufrädern stehen sowohl von der Materialseite, als auch aus Kostensicht von der Fertigungsseite keine Hindernisse mehr im Weg. In Verbindung mit regelbaren, hochtourigen Antriebssystemen können sich hier dem Ventilatorenbauer ganz neue, erweiterte Märkte eröffnen.

Von der digitalen Produktentwicklung zum erweiterten Geschäftsmodell

Die digitale Produktentwicklung hinkt in vielen KMU´s noch hinterher. Dabei kann die Digitalisierung der Produktentwicklung in vielen Unternehmen die Effizienz um ca. 30 Prozent steigern und die Kosten nicht unerheblich verringern.

Im Ventilatorenbau wird heute zwar üblicherweise Strömungssimulationssoftware zur Optimierung und Gestaltung des Schaufelkanals an den Laufrädern eingesetzt, die rechnerkapazitätsintensiven Berechnungen werden aber zum Teil über Nacht bzw. über mehrere Tage durchgeführt, da die meist Klein- oder Mittelständler im Ventilatorenbau nicht über ausreichend  Rechner Power verfügen.

Bei Flugantrieben und Gasturbinen ist 3D-CFD heute Standard. Hier verkaufen beispielsweise die Gasturbinenhersteller ihre Produkte noch bevor der erste Prototyp existiert und dies mit Wirkungsgradzusagen, deren Abweichung von der Vorberechnung im Bereich weit unter 1% liegt. Dies wäre ohne die digitalisierte Produktentwicklung unterstützt durch 3D-CFD-Simualtionsrechnungen noch während der Produktentwicklung nicht denkbar.

Will nun der Ventilatorenbauer auch auf Kundenwünsche und prozessorientierte Auslegung seiner Produkte eingehen, ist es ratsam sich der Plattformdienste großer Anbieter zu bedienen. Hier sind 3D-Konstruktions- und Simulationsprogramme als SaaS-Dienste verfügbar. So bietet beispielsweise das Simcenter Lösungen zur Kombination von Systemsimulation, 3D-CAE und Tests und unterstützt den Anwender somit, die Leistung über sämtliche kritische Attribute hinweg früher und während des gesamten Produktlebenszyklus zu prognostizieren. D.h. von der Produkterstellung, dem parallel erstellten Digital Twin des Produktes  bis hin zur integrierten Lösung für CFD-fokussierte Multiphysik-Simulation stehen Lösungen bereit. Außerdem bekommt man heute auch für wenig Geld nahezu unbegrenzte Rechenleistung, u.a. auch zum Mieten in der Cloud. Bei Verwendung der  attraktiven PowerSession-Lizenzfunktion beispielsweise lässt sich ein Simulations-Auftrag auf einer unbegrenzten Anzahl von Hochleistungscomputern ausführen um tiefere Einblicke in die 3D Strömung an jedem Ort des Ventilators (Laufradschaufelkanal und Spiralgehäuse) sowie in jedem Lastfall zu gewinnen und das daraus resultierende Verständnis plus die im Vergleich zur Messung frühere Verfügbarkeit der Daten schon in der Entwurfsphase zu erhalten. 

Mit derart durchgängigen Lösungen an PLM-Software läßt sich so, nicht nur ein Digitaler Zwilling eines Ventilators, sondern auch z.B. ein Digitaler Leistungsprüfstand erstellen. Während bei der herkömmlichen Erstellung eines Prototyps und Messungen an einem herkömmlich realem Leistungsprüfstand die Entwicklung aus Zeit- und Kostengründen auf wenige Designvarianten beschränkt ist, ließe sich an einem Digital Twin eines Leistungsprüfstands das gesamte Spektrum der Möglichkeiten und kreativen Ideen mit hunderten virtuellen Varianten ausprobieren und damit eine enorme Flexibilität und Reaktion auf individuellen Kundenanforderungen erreichen. Das Verständnis, was bei welchen Änderungen von Parametern in der Abhängigkeit von anderen Parametern passiert, kann man mittels Simulation so viel besser erreichen. Außerdem lassen sich auf einem Digitalen Prüfstand einige Erkenntnisse viel genauer darstellen. Skalare Werte wie z.B. die Wellenleistung können natürlich auf einem realen Prüfstand gut gemessen werden. Aber bereits bei der Austrittstemperatur der Luft fängt es schon an; Reicht eine Sonde oder ist die Temperatur an der Austrittsebene stark ungleichförmig?

Bleibt die Frage, warum sollte ein Ventilatorhersteller einen Digitalen-Leistungsprüfstand erstellen, wenn er einen realen Leistungsprüfstand gemäß den Anforderungen der DIN EN ISO 5801 unterhält? 

Abgesehen von dem eigenen Nutzen bei der schnellen Anpassungsfähigkeit auf Kundenanforderungen, den wesentlich weitreichenderen Erkenntnissen bei der Produktentwicklung und den damit erzielten Wettbewerbsvorsprung, sind auch die realen Betriebskosten gegenüber einem realen Leistungsprüfstand geringer. Die Kosten zur Leistungsvorhaltung den EVU´s gegenüber sind hier nur ein Beispiel. Was aber meiner Meinung nach viel interessanter ist, ein derart skalierbarer Digitaler Leistungsprüfstand könnte als App auf einer Plattform angeboten werden und damit als ein weiterer Baustein der Dienstleistung im Bereich erweitertes Geschäftsmodell fungieren. Bedenken mit diesem Angebot den Wettbewerb schlau zu machen, lassen sich schnell ausräumen. Schließlich muss dieser selbst seine digitale Produktentwicklung betreiben um einen Digitalen Twin seines Produktes an dem Angebot eines Digitalen Leistungsprüfstands zu testen. Die eigenen Produkt- und Ergebnisdaten liegen jeweils strikt gesichert in einem eigenen Bereich. Es würde also der Wettbewerb nicht auf die Daten der eigenen Produktentwicklung zugreifen können, sondern lediglich das Angebot eines digitalen Ventilatorenprüfstands und der Anmietung der Rechnerleistung zugreifen können.

Ein skalierbarer Digitaler Ventilatorenprüfstand könnte also nicht nur der eigenen Produktentwicklung und Anpassungsfähigkeit an Kundenbedürfnisse zugute kommen, sondern als erweitertes Geschäftsmodell auch monetäre Ziele verfolgen.