Schritt 4 – Vorgehensweise für den Einstieg auf der IoT-Plattform MindSphere

                                                                                                         Bildquelle: www.siemens.com/presse

Vorwort – Aussage von Siemens:

siehe https://www.plm.automation.siemens.com/global/en/our-story/newsroom/xcelerator-speeds-digital-future/64645

Siemens hat am 04.09.2019 mit Xcelerator ein integriertes Portfolio aus Software, Diensten und Anwendungsentwicklungsplattformen angekündigt, das personalisiert und an die kundenspezifischen und branchenspezifischen Anforderungen angepasst werden kann, um Unternehmen jeder Größe dabei zu unterstützen, digitale Unternehmen zu werden.

Xcelerator kombiniert das gesamte Portfolio der Siemens-Software für Design, Engineering und Fertigung mit einer erweiterten Mendix-Plattform für die Entwicklung von Low-Code-Anwendungen mit mehreren Erfahrungen. Die Mendix-Plattform umfasst jetzt Cloud- und App-Services für Digital Engineering und Internet of Things (IoT), die auf MindSphere®, dem Cloud-basierten, offenen IoT-Betriebssystem von Siemens, basieren, sowie Mendix ‚marktführendes einheitliches Low-Code- und No-Code-System Entwicklungsumgebungen. Diese Plattform ist einzigartig in Xcelerator und treibt die digitale Transformation voran, indem sie jedem im Ökosystem ermöglicht, dazu gehören Endbenutzer und Ingenieure, die auf einfache Weise ihre vorhandenen Daten und Systeme erstellen, integrieren und erweitern können. Das Unternehmen gab außerdem bekannt, dass aus Siemens PLM Software Siemens Digital Industries Software geworden ist. Diese Änderung soll das Wachstum des Ökosystems und des Portfolios von Lösungen, Anwendungen, Tools und Services des Unternehmens widerspiegeln, die die digitale Transformation in Unternehmen auf der ganzen Welt vorantreiben.

Soweit die Aussage der Siemens Ankündigung. Das liest sich alles sehr gut, zumal die Integration der Mendix Low-Code- und No-Code-Entwicklungsumgebung dem Mangel an IT-Experten bei den Klein- und Mittelständlern des Ventilatorenbaus entgegen kommt, weil auf einfache Weise ihre vorhandenen Daten und Systeme erstellen, integrieren und erweitern können. Versucht man jedoch im Vorfeld zu recherchieren welcher Aufwand erforderlich ist um z.B. den relevanten Anwendungsfall eines „Predictive Maintenance des Complete Fan Systems“ zu realisieren, stößt man schnell auf Grenzen. Zu dem Complete Fan System gehören selbstverständlich auch die Antriebssysteme (Motor und Frequenzumrichter). Ziel ist es das komplette Ventilatorsystem mit intelligenten Sensoren auszustatten und IoT-Plattform gestützt die Auswertungen und Dashboard Darstellungen aller relevanten Daten, Trends und Fehlermeldungen von Motor, Frequenzumrichter und Ventilator als Basis eines Service Pakets zu schnüren. Da diese Auswert- und Darstellungs-Applikation für den Part des Antriebs, laut meiner Recherche, die MindSphere App „Analyze MyDrives“ sein könnte, habe ich versucht hierüber weitere Informationen dahingehend einzuholen, wie diese Tools in dem vorbeschriebenen use case genutzt werden könnten. Nachdem ich nun über zwei Monate lang mindestens 10 Personen bei Siemens vergeblich angesprochen habe und hierzu keinerlei Erkenntnisse gewinnen konnte, komme ich zu dem Schluss, dass entweder detaillierte Informationen in den kostenpflichtigen Beratungs-Service von Siemens gehören, oder aber man mir als Berater ganz simpel diese Informationen nicht geben will. Deshalb müsste sich diese Informationen jeder Ventilatorenbauer eventuell im Zusammenhang mit einer kostenpflichtigen Potenzialanalyse durch Siemens am Ende des Umsetzungsplans wohl selbst besorgen.

Doch nun zur Vorgehensweise für einen Einstieg auf der IoT-Plattform MindSphere von Siemens:

Hier muss differenziert werden, ob ich mir lediglich als MindSphere Nutzer einen Zugang verschaffen will, d.h. die fertigen auf der IoT-Plattform angebotenen Siemens Standard Apps nutzen will, oder ob ich darüber hinaus eigene Apps entwickeln will, wie z.B. für das „Predictive Maintenance des Complete Fan Systems.“

  1. IoT Value Plan

Als reiner Nutzer Zugang, für die Nutzung der Standard Siemens Apps (siehe App Store) reicht der IoT Value Plan (der mit 300,– €/Monat zu Buche schlägt). Der IoT Value Plan bietet die Möglichkeiten Assets mit MindSphere zu verbinden. Daten sicher zu senden und zu speichern. Assets und Benutzer zu verwalten. Verbundene Assets zu visualisieren und zu analysieren und auf MindSphere Anwendungen zuzugreifen. D.h. hier könnte das Projektteam z.B. den Antrieb mittels eines Test-Ventilators mittels Connect 100 mit der MindSphere verbinden, Daten in Echtzeit sammeln und über jeden gängigen Webbrowser darauf zugreifen, sowie sich die hierzu bereitgestellten Analysetools anzusehen.

  1. IoT Developer Plan

Habe ich jedoch vor, über die Nutzung der fertigen Siemens Apps hinaus auch eigene Apps zu entwickeln und später die Integration zu Daten auf meiner eigenen IT bzw. auf den Cloud-Systemen fremder Anbieter vorzunehmen, benötige ich außer dem Nutzer Zugang auch einen Entwickler Zugang zur MindSphere, den IoT Developer Plan (der mit 350,– €/Monat zu Buche schlägt). Darüber hinaus kann ich mich fertiger grapfischer Entwicklungs-Werkzeuge (200,– €/Monat) und Dashboarding-Werkzeuge (225,– €/Monat) bedienen.

  1. IoT Operater Plan

Möchte ich nun meine erstellten Apps, die produktiv Daten und meine Kundenzugänge selbst verwalten benötige ich noch einen Betreiber Zugang mit (500,– €/Monat). Meinen Kunden kann ich dann über meinen Nutzer Zugang als sogenannte Subtenants, je nach Vertrag mit meinen Kunden, Zugriff auf die Daten, Dashboards etc. der an den Kunden ausgelieferten CFS (Complete Fan Systems) freischalten.

Damit hätte ich aus meiner Sicht alle Voraussetzungen, um z.B. ein neues Geschäftsmodell, wie im Schritt 1 – Vorgehensweise bei der Umsetzung zum Geschäftsmodell „Predictive Maintenance des CFS (Complete Fan System)“ beschrieben, geschaffen.

Da ich bei meinen Recherchen nicht immer auf offene Ohren gestoßen bin, würde ich mich freuen, wenn mir Kommentare, Widerreden oder auch gerne Ergänzungen auf meine mail-Anschrift zugesandt werden. Diese werde ich dann gerne in einem nächsten Bericht verarbeiten.

Vorgehensweise bei der Umsetzung zum Geschäftsmodell „Predictive Maintenance des CFS“

Bei meinem Bericht „Beratende Begleitung bei Digitalisierungs-Projekten auf dem Weg zur Plattformökonomie für fertigende Klein- und Mittelständler aus dem Ventilatorenbau“ habe ich sowohl über die Willensfindung als auch die organisatorische Voraussetzung geschrieben, die notwendig sind, wenn sich ein Maschinenbauer auf dem Weg zum Plattform-Unternehmen machen will.

Desweiteren habe ich bereits darauf hingewiesen, dass ein Klein- und Mittelständler nicht sämtliche erforderlichen Aktivitäten und Kompetenzen für eine angestrebte Positionierung im IoT-Ökosystem in Eigenregie aufbauen und durchführen sollte, da dies aus Zeit-, Kompetenz- und Ressourcengründen meist ohnehin nicht darstellbar sein dürfte.  D.h. es ist umso wichtiger neben der Festlegung der eigenen Rolle und Wertschöpfungstiefe auf Basis realistischer Einschätzung der individuellen Ausgangssituation die Suche und Auswahl infrage kommender Partner, mit denen das IoT-Ökosystem gemeinsam gestaltet werden kann, vorzunehmen.

In den folgenden Berichten möchte ich am Beispiel des Ventilatorenbauers eine mögliche Art der Vorgehensweise zum Aufbau eines erweiterten Geschäftsmodells, dem IoT-basierten Predictive Maintenance der Complete Fan Systems (CFS) beschreiben.

Auf der Suche nach infrage kommende Partner bieten sich für einen Ventilatorenbauer zwangsläufig die großen Antriebsfirmen an, deren Produkte  a) zu dem kompletten Ventilatorsystem ohnehin meist dazugekauft werden (also Motore und Frequenzumrichter) und die b) Ihre Produkte bereits zu IoT-fähigen smarten Produkten gestaltet haben und bereits entsprechende Auswert- und Analyse-Tools als SAAS-Dienste auf entsprechenden Plattformen zur Verfügung stellen.

Als Beispiele seien hier ABB und Siemens genannt. Beide Firmen bieten bereits derartige Lösungen an.

ABB mit dem ABB Ability Smart Sensor System auf seinem IoT Betriebssystem basierend auf der Microsoft Azure Cloud-Plattform und Siemens z.B. mit dem Smart Motor Concept auf der MindSphere, einem offenen IoT Betriebssystem von Siemens.

1. Schritt

Bei den beispielhaft genannten Partnern ist es also möglich den Einstieg über deren Smart Sensor Lösungen und den IoT-basierten Daten an einem Versuchs-Ventilator zu beginnen. D.h. den Versuchs-Ventilator z.B. bei der ABB sowohl an der eigenen Lagerung als auch dem Antriebsmotor jeweils mit Smart Sensoren von ABB auszustatten und die Auswertung bereits ohne eigene Plattform-Aktivität sich mittels einer zugehörigen App auf einem Tablet bzw. Smartphone anzusehen. Die Aussage von ABB, dass deren Sensoren auch für Fremdfabrikate geeignet seien, läßt sich so leicht überprüfen, indem man einen Versuchsventilator abwechselnd mit einem ABB-Motor und einem Fremdfabrikat z.B. Siemens, WEG, VEM etc. bestückt und die Ergebnisse der Sensordaten und – analysen vergleicht. Gleiches Prozedere läßt sich auch mit den Smart Motor Concept von Siemens durchführen, wobei hier von Siemens meines Wissens nach kein passender Smart Sensor für die eigene Lagerung des Ventilators zur Verfügung steht.

Für diesen 1. Schritt bedarf es noch keines großen Budges.                                                              Die Kosten bei ABB z.B. liegen bei ca. 100€ pro Sensor + <99€/Jahr pro Sensor Lizenzen + ca. 500€ für den Kauf eines Gateway.

Der Zeitaufwand für die Inbetriebnahme mit der Smartphone-App liegt bei ca. 1-3 Minuten je Sensor , dann die Sensoren an Ventilatorlagerung und Motor installieren (je Sensor auch nur wenige Minuten) und letztlich die Inbetriebnahme des Gateway in ca. 1-3 Minuten.

Den ersten Messlauf sollte man im Gut-Zustand von Ventilator und Motor durchführen und protokollieren, um später auch bei Abweichungen (z.B. Testlauf mit erzwungener Unwcht) die Daten mit den eigenen Messungen vergleichen zu können. So werden spätere Anzeigen bei Abweichungen des Soll-Zustandes besser erkannt und verstanden.

Hat man durch derartige Versuche das System seiner Wahl gefunden, um aus dem Ventilatorsystem ein smartes Ventilatorsystem zu erstellen, kann man sich im 2. Schritt bei der Plattform dieses Anbieters anmelden. Hierzu dann mehr in meinem nächsten Bericht.

 

 

IoT-basierte (PdM) Predictive Maintenance für das (CFS) Complete Fan System

Ventilatoren-Lieferanten als Systemanbieter sollten den Mehrwert einer IoT-basierten (PdM) Predictive Maintenance nutzen. Immer mehr Anbieter versuchen im Zusammenhang mit dem IIoT industriellem IoT Maschinen intelligenter zu machen, um beispielsweise durch Machine-Learning-Analyse die Anlagenzuverlässigkeit und vorausschauende Wartung durch intelligente Sensoren an den Maschinen und Cloud-Software Lösungen den Kunden in die Lage zu versetzen, den Zustand seines Maschinenparks in Echtzeit zu überwachen, zu bewerten und kritische Situationen vorherzusagen.

Beispiele wie Lösungen des als industrielle IoT-Startup gegründeten Unternehmens Petasense siehe,

https://petasense.com/products/motes/

aber auch der von SKF angebotenen Enlight Quick Collect siehe,

http://www.skf.com/de/products/condition-monitoring/basic-condition-monitoring-products/vibration-measurement-tools/quickcollect-sensor/index.html

für Schwinggeschwindigkeits-, Hüllkurvenbeschleunigungs- und Temperaturmessungen mit der Option zum Remote Diagnistic Service, bieten sich für die Lagerüberwachung an.

Aber auch das Smart Motor Concept von Siemens siehe,

https://www.siemens.com/global/de/home/produkte/antriebstechnik/digital-drive-systems/smart-motor-concept.html

bzw.  die von ABB angebotenen Smart Sensoren siehe,

http://new.abb.com/motors-generators/service/advanced-services/smart-sensor

bieten Teillösungen zur Zustandsfernüberwachung von Motoren.

Für einen Ventilatoren-System-Lieferant bietet es sich also an, aus den vielen Teillösungen und den Möglichkeiten die bereits verfügbare Remote Support mit Augmented Automation Anwendungen, wie z.B.  Lösungen der Firma Alexander Bürkle dem Service bieten  siehe,

https://www.alexander-buerkle.de/augmented-automation ,

ein einheitliches webbasierendes Portal zu erschaffen, das all die für den störungsfreien Betrieb eines Ventilatorsystems notwendigen Einzellösungen zu einem stimmigen Gesamtkonzept konzipiert und so seinen Kunden nicht nur bereits die entsprechenden intelligenten Sensoren für die Lagerung, die Motoren etc, sondern auch für die Frequenzumrichter entsprechende Tools für den Online-Zugriff auf die Antriebsinformationen, Behebungen von Störungen etc. wie z.B. mit dem Drivebase von ABB mit anbietet.

All dies würde den Prozeß-Ventilator IIoT-fähig machen und dem Anbieter eine erweiterte Service-Leistung bieten mit einer win-win-Situation für Anbieter und Betreiber.

Verpasste Chancen?

Die Reduktion des Primärenergieverbrauchs um 50% gegenüber 2008 ist eine der Säulen des Energiekonzeptes 2050 der Bundesregierung Deutschland.

Die Bundesregierung hat sich ambitionierte Ziele zur Steigerung der Energieeffizienz gesetzt. Diese wurden mit der Verabschiedung des Nationalen Aktionsplans Energieeffizienz (NAPE) bekräftigt. Um diese Ziele zu erreichen, hat sie einen Energieeffizienzfonds zur Förderung der rationellen und sparsamen Energieverwendung aufgelegt, auf dessen Grundlage unter anderem die Förderung hocheffizienter Querschnittstechnologien vorgesehen ist. Mit ihrer Hilfe sollen die bestehenden Einsparpotentiale erschlossen und Ressourcen eingespart werden.

Die aktuelle Richtlinie zum Einsatz hocheffizienter Querschnittstechnologien wurde am 10. Mai 2016 im Bundesanzeiger veröffentlicht. Das Förderprogramm wird bis Ende 2019 fortgeführt. (Quelle BAFA)

Nach oben beschriebenem Förderprogramm werden u.a. die Querschnittstechnologien Ventilatorsysteme, also Ventilatoren und Antriebssysteme bei der Umrüstung auf neue, effizientere Systeme gefördert. Siehe hierzu die BAFA Publikationen unter den Merkblättern Einzelmaßnahmen und Optimierung technischer Systeme.  Leider nehmen die Betreiber von Anlagen mit Prozeß-Ventilatoren dies kaum in Anspruch.

Unter der HBC Horst Benderoth Consulting berate ich Anlagenbetreiber bei der Umrüstung der Prozeß-Ventilatoren auf hocheffiziente CFS (Complete Fan System). D.h. Ventilatorensyteme mit PDS (Power Drive System), sprich hocheffiziente neue Motoren mit Drehzahlregelung mittels Frequenzumrichter CDM (Complete Drive Modul). Bei der Umsetzung spüre ich jedoch Zurückhaltung. Dies ist mir ein Rätzel. Denn in fast allen Fällen liegt die zu erzielende Energieeinsparung bei 30% und mehr.  Mir sind Fälle unter gekommen, wo in der Kombination der Fehler sowohl des Regelungskonzeptes als auch der verfahrenstechnischen Einbindung sich nach Auswertung der Daten im Jahresmittel Energie-Einsparungen von 68% nach einer Umrüstung ergeben hätten. Mir sind aber auch Aussagen im Gedächtnis geblieben, bei denen mir Betreiber trotz Amortisationszeiten von <= 2 Jahren unter vorgehaltener Hand vorgerechnet haben, daß meine Rechnung so nicht stimme, wenn ich den Nachteil bei der EEG-Umlagenbefreiung, der sich durch derart hohe Energie-Einsparungen ergeben würde, gegen rechne.

Soll also wirklich Energie-Einsparung gefördert werden? Oder ist die Zielsetzung bei dem Energiekonzept 2050, bei dem unter anderem eine Reduktion des Primärenergieverbrauchs um 50%  gegenüber 2008 deklariert wird, nur eine schön klingende Aussage. Bzw. sind Passagen der EEG-Umlagenbefreiung kontraproduktiv zum Ziel der Energie-Einsparung?

Ventilatorenbauer und elektrische Antriebstechnik vereint der Systemgedanke

Ausgangsbasis, Antriebskraft und Zielsetzung der EU-Richtlinien ist die Forderung nach Energieeffizienz.

Sowohl die Verordnung (EU) Nr. 327/2011 zur Durchführung der Richtlinie 2009/125/EG des Europäischen Parlaments und des Rates im Hinblick auf die Festlegung von Anforderungen an die umweltgerechte Gestaltung von Ventilatoren, die durch Motoren mit einer elektrischen Eingangsleistung zwischen 125 W und 500 kW angetrieben werden, als auch die auf die elektrischen Antriebe bezogene EN 50598 kommen zu der Einsicht, dass nicht Komponenten Energie einsparen sondern komplette Systeme in den tatsächlichen Anwendungen.

So wurden erstmals in der EU-Verordnung Nr. 327/2011 bei der Mindesteffizienz-Anforderung an Ventilatoren die Wirkungsgrad- bzw. Verlustbetrachtungen nicht nur für das Produkt Ventilator, sondern für das Gesamtsystem Ventilator, inkl. Gehäuse, Moment übertragende Komponenten, Antriebsmotor und Regelung deklariert. Bei der Regelung werden hier allerdings nicht so deutlich wie interessanterweise bei der Antriebstechnik verschiedene Lastpunkte festgeschrieben. Dies kann bei der reinen Betrachtung im Auslegungspunkt zu der kuriosen Situation führen, dass hier ein im Auslegungspunkt offenes Regelorgan Klappe bzw. Drallregler weniger Verluste aufweist als ein CDM (Complete Drive Module = Frequenzumrichter). Was ganz anders aussieht, wenn mehrere Lastfälle betrachtet werden.

Bei der Norm zur Ökodesignanforderung für elektrische Antriebssysteme im Niederspannungsbereich EN 50598 hingegen wird die Verlustbestimmung sowohl der Antriebskomponenten Motor, als auch CDM in 8 verschiedenen Auslastungspunkten vorgegeben. Diese Einzelverluste werden dann zu den Power-Drive-System- / Motorensystemverlusten addiert. Erwähnt wird hier bereits auch der Energieeffizienindex (EEI) einer elektrisch angetriebenen Arbeitsmaschine. Wobei hier lediglich der Hinweis erfolgt, dass zur Ermittlung des EEI die Verluste des eingesetzten Motorsystems vorliegen müssen um dann die Verluste der Arbeitsmaschine inklusiv der Moment übertragenden Module hinzu zu addieren.

Beides die Arbeitmaschine (in unserem Fall der Ventilator) und das Motorsystem (PDS) bilden das Erweiterte Produkt bzw. in unserem Fall das Ventilatorsystem. Obgleich ja gerne alle Abkürzungen aus den englischen Begriffen hergeleitet werden, habe ich für das Ventilatorsystem noch nichts passendes gefunden. Vorschlag nennen wir es doch einfach CFS (Complete Fan System).

Da aber der entscheidende Ansatz der Verlustvermeidung bei der Wahl des Regelkonzeptes zu den verfahrenstechnischen Anforderungen des Kundenprozesses bestimmt wird, sollte also auch logischerweise die konzeptionelle Gestaltung, Lieferung und damit Verantwortung des erweiterten Produktes Ventilatorsystem in einer Hand bei dem Ventilatorlieferanten angesiedelt sein. Nur er kann bei den vom Verfahrentechniker vorgegebenen Lastpunkten einer Anlage die mit der Ventilatorkennlinie und dem entsprechend gewählten Regelungskonzept sich ergebenden Arbeitspunkte und damit den Energieeffizienzindex (EEI) des kompletten Ventilatorsystems (CFS) bestimmen. Eine strickte Trennung von Maschinenbau und Antriebstechnik muss dem Energieeffizienzgedanken weichen. Deshalb plädiere ich dafür, das CFS als Einheit zu betrachten und die Konzeptionierung und Lieferung in einer Hand zu belassen.