Aion von AiSight – Maschinenüberwachung inkl. Echtzeit FFT-Analyse (Fast Fourier Transform) und KI-Algorithmen in der Firmware dank Edge-Computing Architektur

Zwei wichtige Faktoren, die bei der Entwicklung einer Digitalisierungsstrategie berücksichtigt werden müssen, sind, dass alle Prozesse digitalisiert werden können und dass dies manchmal einfacher ist als gedacht.

Basierend auf diesen Prinzipien wächst AiSight, ein in Berlin ansässiges, junges, internationales Startup, weiterhin erfolgreich.

Die neueste Version ihrer Lösung „Aion“ wurde gerade veröffentlicht.  Es nutzt Algorithmen der künstlichen Intelligenz, um den Zustand einer Maschine in Echtzeit zu bestimmen, Fehler vorherzusagen und die Maschinenparameter basierend auf Sensordaten dynamisch zu regulieren.  Aion besteht sowohl aus Hardware- als auch aus Softwarekomponenten.

Die Hardware besteht aus einem Sensorkit, das eine Vielzahl von Sensoren enthält und so optimiert ist, dass eine Plug & Play-Installation ohne spezielles Fachwissen möglich ist.

Die Software verwendet maschinelle Lernmodelle, um den Zustand einer Maschine zu bewerten, Anomalien zu identifizieren und Fehlerursachen basierend auf Mustern und physikalischen Parametern in den Sensordaten zu bestimmen.  Der Schlüsselalgorithmus dieser Lösung ist das „akustische Fingerprinting“, bei dem physikalische Parameter aus den Sensordaten extrahiert werden, um Muster zu identifizieren.

Was Aion von anderen Lösungen auf dem Markt unterscheidet, ist die einfache Implementierung und Skalierbarkeit, die diese sehr fortschrittlichen Analysen auch für KMU zugänglich macht.

Unter den Anwendungen von Aion finden sich auch Industrieventilatoren.  Die Funktionsweise der Lösung setzt ein gründliches Wissen darüber voraus, weshalb solche Maschinen ausfallen können.  Basierend auf diesem Wissen ist es möglich, die von Ventilatoren oder anderen Maschinen ausgehenden Schwingungen zu interpretieren und sie mit einem bestimmten Fehler zu verknüpfen.

Die Hauptfehler, mit denen Industrieventilatoren konfrontiert werden können, sind Lagerfehler.  Die Lager sind eine der wichtigsten Komponenten eines Ventilators, daher kann die Vorhersage ihrer Fehlfunktion äußerst wichtig sein.  Die Hauptursachen für einen Lagerfehler sind Schmierung (das Schmiermittel kann aufgrund hoher Temperaturen unzureichend, ungeeignet oder verschlechtert sein) und Verunreinigungen, die auftreten, wenn Fremdstoffe und Partikel mit dem Lager in Kontakt kommen.

Durch Beobachtung von Vibrationen ist es möglich, einen Lagerfehler zu erkennen.

 

 

 

 

(Abbildung 1)

Die Vermeidung von Lagerfehlern ist auch möglich, indem wichtige Ereignisse überwacht werden, die die Wahrscheinlichkeit von Lagerfehlern erhöhen können. 

Es folgen einige Beispiele.

-Unwucht. Diese Fehler treten im Allgemeinen auf, wenn sich Material auf den Laufradschaufeln ansammelt und dies dann von einigen Schaufeln ungleich abplatzt oder wenn hohe Temperaturen, die ein Ventilator im Betrieb erreicht, eine ungleichmäßige Ausdehnung einiger Komponenten des Laufrades verursachen. Diese Unwucht erhöht die Wahrscheinlichkeit eines Lagerfehlers exponentiell. 

 

 

 

 

(Abbildung 2)

-Fehlausrichtung:  Dieser Fehler hängt hauptsächlich mit der falschen Installation neuer Geräte (wie Kupplung, Antrieb etc.) oder mit Wellen und Lagern zusammen, die nicht richtig montiert wurden.

 

 

 

 

 

(Abbildung 3)

Neben der Erkennung von Fehlern oder Schlüsselereignissen, die zu diesen führen könnten, kann die Vibrationsüberwachung auch die aktuellen Wartungsvorgänge optimieren.  Es gibt zwei Beispiele für Fehler, die auf unsachgemäße Wartungsarbeiten zurückzuführen sind.

Erstens treten nach Wartungssitzungen, bei denen das Lager auf der Welle gewechselt wird, häufig Fehlausrichtungen auf.  Durch die ständige Überwachung von Industriemaschinen ist es auch möglich, solche Fehler sofort zu erkennen.

Zweitens ist bei Industrieventilatoren eine ordnungsgemäße Reinigung der Schaufeln von grundlegender Bedeutung.  Eine zu häufige oder zu späte Durchführung dieses Vorgangs kann zu einer Verringerung der Effizienz führen.  AiSight ist in der Lage, diese Art von Fehlern zu erkennen und die Planung der Wartungsvorgänge zu vereinfachen, um mit maximaler Leistung zu arbeiten.

Die Art und Weise, wie AiSight den Bediener auf all diese Fehler aufmerksam machen kann, ist sehr einfach: Aion kann an jede Industriemaschine angeschlossen werden.  Seine Sensoren verfolgen viele Parameter wie Temperatur, Magnetfeld und hauptsächlich Vibration.  Die dreiachsige Analyse ermöglicht eine hochauflösende Überwachung aller Arten von Geräten. Die Firmware führt eine FFT-Analyse (Fast Fourier Transform) und eine Reihe verschiedener Signalverarbeitungstechniken in Echtzeit durch.  Die FFT-Analyse kann die Zeitbereichsdaten erfassen mit der Erkennung von transienten Signalen, Schwebungen sowie wiederkehrenden Stoßfolgen und diese in den Frequenzbereich umwandeln, um den Bedienern zu zeigen, wie sich die Vibrationen der Maschine verhalten und wie diese mit der Normalität verglichen werden (wie in den obigen Grafiken dargestellt).  Die Analyse der Frequenzgraphen erleichtert die Erkennung der Grundursache hinter jedem Fehler.  Die Algorithmen für maschinelles Lernen, die die Analyse durchführen, sind bereits für die Interpretation dieser Daten geschult und für die direkte Anwendung in den im Sensor eingebetteten leistungsstarken Mikroprozessoren optimiert.  Dies ist möglich durch eine Kombination der neuesten Fortschritte in der Mikroprozessortechnologie und der Optimierung von Algorithmen für extrem leistungsschwache Umgebungen.  Die Edge-Computing-Architektur impliziert, dass nur relevante Daten an die Cloud gesendet werden, wodurch der Datenverkehr erheblich reduziert wird.

Alle Daten sind in Echtzeit auf dem Dashboard sichtbar. Wenn ein Fehler erkannt wird, werden Warnungen nicht nur über das Dashboard (siehe Titelbild), sondern auch per E-Mail und SMS gesendet, um ein rechtzeitiges Eingreifen zu ermöglichen.

Bei rotierenden Geräten kann diese Analyse zu einer durchschnittlichen Erhöhung der Betriebszeit um 6% führen, was sich positiv auf die Gesamtanlageneffektivität (OEE) auswirkt.  Die Wartungsproduktivität kann sich im Durchschnitt um 45% verbessern. Meistens wird sie entsprechend den Anforderungen der Geräte geplant und durchgeführt, wodurch die Belastung der Bediener durch ungeplante Eingriffe verringert wird.

Ventilatorenbauer und elektrische Antriebstechnik vereint der Systemgedanke

Ausgangsbasis, Antriebskraft und Zielsetzung der EU-Richtlinien ist die Forderung nach Energieeffizienz.

Sowohl die Verordnung (EU) Nr. 327/2011 zur Durchführung der Richtlinie 2009/125/EG des Europäischen Parlaments und des Rates im Hinblick auf die Festlegung von Anforderungen an die umweltgerechte Gestaltung von Ventilatoren, die durch Motoren mit einer elektrischen Eingangsleistung zwischen 125 W und 500 kW angetrieben werden, als auch die auf die elektrischen Antriebe bezogene EN 50598 kommen zu der Einsicht, dass nicht Komponenten Energie einsparen sondern komplette Systeme in den tatsächlichen Anwendungen.

So wurden erstmals in der EU-Verordnung Nr. 327/2011 bei der Mindesteffizienz-Anforderung an Ventilatoren die Wirkungsgrad- bzw. Verlustbetrachtungen nicht nur für das Produkt Ventilator, sondern für das Gesamtsystem Ventilator, inkl. Gehäuse, Moment übertragende Komponenten, Antriebsmotor und Regelung deklariert. Bei der Regelung werden hier allerdings nicht so deutlich wie interessanterweise bei der Antriebstechnik verschiedene Lastpunkte festgeschrieben. Dies kann bei der reinen Betrachtung im Auslegungspunkt zu der kuriosen Situation führen, dass hier ein im Auslegungspunkt offenes Regelorgan Klappe bzw. Drallregler weniger Verluste aufweist als ein CDM (Complete Drive Module = Frequenzumrichter). Was ganz anders aussieht, wenn mehrere Lastfälle betrachtet werden.

Bei der Norm zur Ökodesignanforderung für elektrische Antriebssysteme im Niederspannungsbereich EN 50598 hingegen wird die Verlustbestimmung sowohl der Antriebskomponenten Motor, als auch CDM in 8 verschiedenen Auslastungspunkten vorgegeben. Diese Einzelverluste werden dann zu den Power-Drive-System- / Motorensystemverlusten addiert. Erwähnt wird hier bereits auch der Energieeffizienindex (EEI) einer elektrisch angetriebenen Arbeitsmaschine. Wobei hier lediglich der Hinweis erfolgt, dass zur Ermittlung des EEI die Verluste des eingesetzten Motorsystems vorliegen müssen um dann die Verluste der Arbeitsmaschine inklusiv der Moment übertragenden Module hinzu zu addieren.

Beides die Arbeitmaschine (in unserem Fall der Ventilator) und das Motorsystem (PDS) bilden das Erweiterte Produkt bzw. in unserem Fall das Ventilatorsystem. Obgleich ja gerne alle Abkürzungen aus den englischen Begriffen hergeleitet werden, habe ich für das Ventilatorsystem noch nichts passendes gefunden. Vorschlag nennen wir es doch einfach CFS (Complete Fan System).

Da aber der entscheidende Ansatz der Verlustvermeidung bei der Wahl des Regelkonzeptes zu den verfahrenstechnischen Anforderungen des Kundenprozesses bestimmt wird, sollte also auch logischerweise die konzeptionelle Gestaltung, Lieferung und damit Verantwortung des erweiterten Produktes Ventilatorsystem in einer Hand bei dem Ventilatorlieferanten angesiedelt sein. Nur er kann bei den vom Verfahrentechniker vorgegebenen Lastpunkten einer Anlage die mit der Ventilatorkennlinie und dem entsprechend gewählten Regelungskonzept sich ergebenden Arbeitspunkte und damit den Energieeffizienzindex (EEI) des kompletten Ventilatorsystems (CFS) bestimmen. Eine strickte Trennung von Maschinenbau und Antriebstechnik muss dem Energieeffizienzgedanken weichen. Deshalb plädiere ich dafür, das CFS als Einheit zu betrachten und die Konzeptionierung und Lieferung in einer Hand zu belassen.

Systemverantwortung gehört in eine Hand

Obgleich die Verordnung (EU) 327/2011 hohe Ventilator-System-Wirkungsgrade fordert, finde ich als Berater zur Effizienz von Prozeß-Ventilatoren immer wieder grundlegende Fehler in den Anlagen vor, die aus teilweise effizienten Einzelkomponenten ineffiziente Ventilator-Systeme ergeben.

Warum ist das so?

  1. Ausschreibungsfehler:                                                                                                                     Obgleich bekannt ist, daß gut 31,3 % entsprechend ca. 170 TWh des Stromverbrauchs in Deutschland auf elektrische Antriebe bzw. elektromotorisch angetriebene Systeme entfallen, und davon ein großer Teil auf die Querschnittstechnologien Pumpen und Ventilatoren entfällt, werden in den Ausschreibungen leider immer noch absolut uneffiziente Regelungskonzepte vorgegeben. Hier sollten die Planer endlich einmal überhohlte Ausschreibungs-Spezifikationen überarbeiten und nicht alt hergebrachtes dauern aus der Schublade ziehen. Denn hier könnten allein durch effizientere Motore und Drehzahlregelung rund 28,5 TWh/Jahr eingespart werden. Bei nur 10 ct/kWh ergäbe dies eine Kosteneinsparung von 2,85 Mrd. €/Jahr bzw. eine Senkung des CO2-Ausstoßes von 17 Mio. t/Jahr. Auch wenn dem Anlagenbauer (2-ter in der Kette) diese Tatsache bewusst ist, bleibt ihm nichts anderes übrig, als erst einmal gemäß Ausschreibungs-Spezifikationen anzubieten, will er den Auftragszuschlag erhalten. Kommt dann der Ventilator-Lieferant (3-ter in der Kette) und  will seinen Kunden (den Anlagenbauer) von dem besseren, weil effizienteren Konzept überzeugen, indem er aufwendig alternative Lösungen aufzeigt, ist für derartige Konzepte kein Geld im Budge. D.h. hier gehen dann wieder einmal Investkosten vor den Lebenszykluskosten.
  2. Verfahrenstechnische Einbindung:                                                                                               Leider werden auch häufig Prozeß-Ventilatoren verfahrenstechnisch falsch eingebunden. So sind mir Saugzugventilatoren in Rauchgasreinigungsanlagen aufgefallen, die je einer Reinigungsstufe zugeordnet sind und mit einer offenen Bypaßregelung eingesetzt waren. Als der Betreiber die Leistung erhöhen wollte sind ihm Umrüstungen der Saugzüge auf höhere Leistung und mit Drehzahlregelung angeboten und eingebaut worden. Mit dem Ergebnis, daß die Drehzahlregelung selbstverständlich vollkommen unwirksam ist, da der neue Saugzug so halt nur ein noch höheren Volumenstrom im Kreislauf bei voller Drehzahl fördert. So bringt selbst die effizienteste Antriebstechnik keine Energie-Ersparung.
  3. Zu- und Abströmbedingungen:                                                                                                       Durch strömungstechnisch schlechte An- und Abströmverhältnisse reduziert sich nicht nur der Wirkungsgrad eines Ventilator-Systems um mehrere Prozentpunkte, nein bei den so entstehenden Verwirbelungen und instationären Strömungszuständen können auch erhebliche Schäden verursacht werden. Auch hier beginnen die Fehler meist bereits in der Planung der Gesamtanlage. Planer sind stolz jeden Quadratmeter Fläche ausgenutzt zu haben und Luft- und Rauchgaskanäle mit 90-Grad Umlenkungen unter Ausnutzung jeder freien Ecke Platz optimal geführt zu haben. Damit dann die Anlage noch kompakter und günstiger wird, werden Kanalquerschnitte noch weiter reduziert. Allein hier könnten durch strömungsgerecht ausgeführte Kanalführungen und somit Widerstandreduzierungen erhebliche Energie-Einsparungen erzielt werden.  Mir sind Umrüstungen bekannt bei denen allein an einem großen Saugzuggebläse bei gleicher lufttechnischer Leistung der Energiebedarf von vorher 9.902 kW auf 8.675 kW reduziert werden konnte. Eine Energie-Einsparung von 1.227 kW. Bei einer Anlagenlaufzeit von 8.000 h/Jahr also 9.816.000 kWh entsprechend bei 10 ct/kWh immerhin eine Kostenreduzierung von 981.000,– Euro/Jahr.

Fazit:                                                                                                                                                                 Die Verordnung (EU) 327/2011 fordert hohe System-Wirkungsgrade. Dann sollten Ventilator-Lieferanten auch System-Verantwortung übernehmen. Das geht aber nur, wenn der Liefer- und Leistungsumfang auch in die Hand des Ventilator-System-Lieferanten gegeben wird.

Augmented Automation Service eine Lösung für Ventilator-System-Anbieter?

Bildquellen: HBC Horst Benderoth Consulting, Reitz Ventilatoren, Alexander Bürkle,  

Der technologische Fortschritt bei dem Thema IoT (Internet of Things) und dem exponentiellen Wachstum der Rechnerleistung wird uns Lösungen als denkbar erscheinen lassen, bei dem sich das Ventilator-System selbst überwacht und bei drohenden Störungen sich rechtzeitig beim zuständigen Service-Personal anmeldet.

So wie heute schon E-Motore mit der Remote Condition Monitoring-Lösung, mit intelligenten Sensoren ausgerüstet werden können, die Daten zu Vibration, Temperatur, Überlastung, Energieverbrauch etc. liefern und mit seinen On-Board-Algorithmen Informationen über den Zustand des Motors über ein Smartphone oder das Internet an einen sicheren Server weiterleiten, könnte dies eine Entwicklung für das gesamte Ventilator-System sein.

Ist die von der Leistungselektronik gesteuerte Drehzahlregelung, der Beginn zur Digitalisierung des Ventilatorsystems?

Online Condition Monitoring ist heute – erlauben Sie mir hierzu einen Blick in die Zukunft.
Das Ventilatorsystem ist komplett mit Smart Sensoren ausgestattet.

Folgendes Szenario in Anlehnung an den Bericht „keine Angst vor der automatisierten Wartung“  Autor: Anne Prokopp – erschienen unter www.industry-of-things.de  auf Ventilator-Systeme bezogen, würde sich wie folgt darstellen:

Ein Servicetechniker wird über eine Push-Benachrichtigung auf seinem Smartphone über einen abweichenden Sollwert informiert. Parallel dazu wird im Issue-Tracking-System (ITS) ein Ticket zu diesem Vorgang angelegt. Das ITS ist mit dem Enterprise Resource Planning (ERP) verbunden, worüber die Wartungshistorie der Maschine beziehungsweise des Bauteils eingesehen werden kann. Hinweise, wie ein defektes Bauteil zu wechseln ist, erhält der Servicetechniker aus der technischen Dokumentation in Form von Hilfevideos, Bildern und Texten auf sein Smart Glasses. Während der kompletten Maßnahme besteht jederzeit die Möglichkeit, sich über Remote Service Hilfe bei einem Kollegen oder Vorgesetzten zu holen, der sich an einem anderen Ort befindet, bzw. bidirektional mit einem entfernten Experten zu kommunizieren. Mittels Augmented Reality, also permanente, mobile Erweiterung der visuellen Warnehmung durch Einblendung von Echtzeitinformationen mittels Head-Up-Displays kann so der Experte dem Servicetechniker vor Ort die notwendigen Informationen einblenden und ihn bei der Fernwartung führen. Das heißt, Augmented Automation Service- Lösungen. Also audiovisuell unterstützte Fernwartung.

Eine Anbindung an das Lagerverwaltungssystem bucht dann das verbaute Ersatzteil automatisch aus dem Bestand. Der Tausch wird dokumentiert und mit allen generierten Daten in der Wartungshistorie abgelegt.

Der wirtschaftliche Vorteil läge nicht nur in einer ausfallsicheren Anlage für den Betreiber, sondern auch in einem deutlichen Mehrwert des Service-Anbieters.

Erforderliche Abstimmarbeiten des Ventilator-Systems

Spätestens seit der EU-Richtlinie 327/2011 hat sich bei Ventilatoren die Systembetrachtung durchgesetzt. Wobei die Richtlinie vordergründig nur den Wirkungsgrad des Gesamtsystems im Blickwinkel hat.

Bei kleineren Ventilator-Einheiten, wie sie beispielsweise in der Kälte-, Klima- und Gebäudetechnik eingesetzt werden, ist der Systemgedanke gängige Praxis. Hier wird zur Erreichung eines guten Systemwirkungsgrades und damit eines effizienten Produktes an allen Stellschrauben gedreht. Bei den sogenannten EC-Ventilatoren reicht das von aerodynamisch optimierten Hochleistungslaufrädern in optimerten Gehäusen mit Spiralkontur, über den Einsatz von EC-Motoren (Electronical Commutation), also Synchron-Motore mit Permanentmagneten und elektronischer Kommutierung (Stromwendung) durch Transistoren bis hin zur passenden elektronischen Steuerung für eine stufenlose steuerbare Drehzahl. Der erforderliche mechanische, elektrische akustische und letztlich schwingungstechnische Abgleich ist hier, bei Lieferung eines Gesamtsystems aus einer Hand eine Selbstverständlichkeit.

Anders sieht dies bei größeren Prozeß-Ventilatoren aus. Die auf den ersten Blick aus kommerzieller Sicht selbstverständliche Aufteilung der Liefergrenzen – Ventilator (Maschinenbau) auf der einen Seite, regelbarer Antrieb, also Motor und Frequenzumrichter, zur E-Technik bzw. Regelungstechnik auf der anderen Seite – hat nicht nur den Nachteil einer unklaren Verantwortlichkeit des Ventilator-Systemwirkungsgrades, diese Aufteilung führt auch zu einer Grauzone in der sich für das Abstimmen im Hinblick auf einen schwingungsarmen Lauf nach ISO/DIS 14694 bzw. >300 kW Antriebsleistung nach DIN ISO 10816-3 keine der beiden Lieferparteien zuständig fühlt, und so diese zwingend erforderlichen Arbeiten meist vernachlässigt werden. So treten zwangsläufig Schwingungsprobleme des Gesamtsystems auf, mit dem Ergebnis, dass die Schwingungsprobleme und die hieraus entstehenden Schäden als Garantiepunkt zwischen den Parteien strittig hin und her geschoben werden.

Das Ergebnis meiner Untersuchungen in den vielen Jahren meiner aktiven beruflichen Laufbahn zeigte nun, dass es sich bei einem drehzahlgeregelten Ventilator-System schwingungstechnisch um ein sehr komplexes System handelt. Dieses System ist nicht einmal mit Hilfe modernster Rechnerprogramme, wie z.B. Finite Elemente oder Modalanalysen, in einem angemessenen Aufwand vorausbestimmbar. Da z.B. bei einer Wellenstrangberechnung nicht nur die Federkonstanten der Einzelelemente Motorwelle, Kupplung, Ventilatorwelle sondern als Ansatz der Berechnung natürlich auch die Antriebsdrehmomente, der Regelbereich und damit die Erregerfrequenzen bekannt sein müssen. Hier gibt es aber zu dem gewollten und berechenbaren Antriebsgrunddrehmoment eine Vielzahl an systembedingten, und vor allem durch Parametrierung veränderbaren, zur jeweiligen Grundfrequenz überlagerten Oberwellendrehmomente. D.h. eine rein theoretische Betrachtung ist so gut oder falsch wie der Ansatz. Das bedeutet, Resonanzschwingungen können konstruktiv nur aufwendig vermieden werden, wenn die Erregerfrequenzen, -momente bzw. –kräfte bekannt sind. Diese sind aber parametrierbar und insofern im Voraus nicht festlegbar.

Die Ursache liegt also in der Kombinationsvielfalt von den verschiedensten Erreger- und Eigenschwingungen:

Im Folgenden sind einige der Schwingungsursachen dargestellt.

  1. Der gewünschte Regelbereich von z.B. 5-50 Hz, d.h. ein weites Spektrum an Erregerfrequenzen.
  2. Die Ausgangsspannung eines Frequenzumrichters enthält neben der gewünschten Grundschwingung Lamda = 1 eine Reihe von Oberschwingungen mit den Ordnungszahlen Lamda = 5,7,11 usw. Diese Oberschwingungen bewirken abwechselnd mit- und gegensinnig zu den Grundschwingungsfeldern mit lamda-facher Geschwindigkeit umlaufende zusätzliche Drehfelder. Hierdurch können asynchrone Sattelmomente gebildet werden. In jedem Fall aber treten zusätzliche magnetische Anregungen durch Umrichterspeisung im Motor auf.
  3. Resonanzen können im Motor und im Ventilator auftreten. Ein Beispiel: Allein die Tatsache, Wälzlager bei verschiedenen Frequenzen von 5-50 Hz zu betreiben, kann im Lager zu Resonanzen führen. Wird die Erregerfrequenz jetzt noch von Oberwellen lamda-facher Ordnung überlagert, ist die Wahrscheinlichkeit, Resonanzpunkte zu erhalten, um ein Vielfaches gestiegen.
  4. Resonanzverhalten durch Eigenspannungen: Ein Ventilator bleibt selbst bei stabilster Ausführung letztlich eine Blechschweißkonstruktion mit den verschiedensten Eigenspannungen im Blech, schwingungstechnisch ein idealer Resonanzkasten. Erregt man diesen, wie unter 1. und 2. beschrieben, trifft man mit 90%-iger Sicherheit auf Resonanzpunkte, die durch Verstimmen beseitigt werden müssen.
  5. Nicht zu unterschätzen ist die Tatsache, dass bei einem Ventilator ein kompressibles Medium gefördert wird, das kleinste drehfrequente Schwingungen verstärkt und nicht, wie z.B. bei einer Pumpe, dämpft. Dies ist im Übrigen auch ein Grund warum bei Ventilatoren mit falsch parametrierten Frequenzumrichtern es bei Anlagen mit häufigen Lastwechseln zu Kupplungsschäden kommt.

Außer der Schwingungsproblematik des Ventilators treten auch Resonanzschwingungen z.B. der Trafobleche des Antriebmotor durch Oberwellen bei FU-Betrieb auf. Diese führen zu einer Schallpegelerhöhung, die je nach FU-System und Parametrierung zwischen 5-12 dB(A) liegen kann. Aber auch angeregte Blechflächen des Ventilatorgehäuses oder der Motorkonsole können in Resonanzschwingungen versetzt werden und als solche wie eine Membrane wirken und selbst zur neuen Schallquelle, die die tonale Frequenz der Taktfrequenz des FU´s widerspiegelt,
werden.  

Letztlich führen sogenannte Common-mode Spannungen und Ströme bei nicht sachgerechter optinaler Ausstattungen des Motors und des Frequenzumrichters, aber auch des Erdungskonzepts durch ein kapazitiv eingekoppeltes Wellenpotential zu Lagerströmen und damit Lagerschäden.  

Konsequenz:

Das System Ventilator, Motor und Frequenzumrichter muss aus schwingungstechnischer Sicht so aufeinander abgestimmt werden, dass über den garantierten Regelbereich alle Resonanzschwingungen beseitigt werden, um die geforderte Schwinggüte nach ISO/DIS 14694 bzw. >300 kW Antriebsleistung nach DIN ISO 10816-3 einhalten zu können. Die hierzu erforderlichen Arbeiten sind in jedem Fall von den Komponentenlieferanten zu fordern, da anderenfalls die erforderliche Schwinggüte nicht garantiert werden kann. Die Abstimmarbeiten eines drehzahlgeregelten Ventilators sollten idealerweise (soweit von der Leistungsgröße her wirtschaftlich sinnvoll) auf einem Ventilatorenprüfstand durchgeführt werden, weil nur hier klar zwischen elektrischen Schwingungen des Antriebs, mechanischen Schwingungen des Ventilators oder aber Schwingungen der vom Ventilator aufgebauten Gassäule (Pumpen, Strömungsabrisse, Verwirbelungen im Leitungssystem etc.) unterschieden werden kann. Auf diese Art und Weise lassen sich im Vorhinein Unstimmigkeiten über Ursache und Wirkung im Anlagenprozess vermeiden. Im Prüffeld kann jede Rückwirkung des Systems ausgeklammert werden und somit ein optimales und vor allem stabiles, schwingungsarmes Laufverhalten eingestellt, parametriert und dokumentiert werden. Dies ist auch mit ein Grund weshalb das Ventilator-System (also Ventilator, Motor und Regelung) auch bei größeren Prozeß-Ventilatoren in einer Hand bleiben sollte.

 

 

 

Nennen Sie das strömungsgerechte Ausführung?

Haben wir wirklich nichts dazugelernt?
Trotz der Möglichkeiten mittels CFD-Analysen strömungsgerechte Zu- und Abluftleitungen zu gestalten, sehen Leitungsführungen der Luft- bzw. Rauchgaskanäle heute nicht besser als früher aus.

Bei einer derartig schlechten Kanalführung,  wie diese CFD-Analyse der Firma NECON InnoSys GmbH bei der Untersuchung eines Ansaugkanals des Primärlüfters in einem Kraftwerk zeigt, kann weder der Ansaugschalldämpfer seine bestimmungsgemäße Wirkung entfalten, noch die nach dem Schalldämpfer sich ergebende Zuströmung zu dem Prozeß-Ventilator als optimal bezeichnet werden. Ganz im Gegenteil. Durch die Verwirbelung und ungleiche Anströmung des Schalldämpfers sorgen diese instationären Zustände für unterschiedliche Beaufschlagung der einzelnen Kulissenspalten. Diese zeitlich wechselnden Strömungsprobleme sorgen für Teilströmungen mit unterschiedlichen Strömungsgeschwindigkeiten und damit unterschiedlichen Druckverhältnissen zwischen den Kulissen. Diese Druckpulsationen führen auf Dauer zu Beschädigungen der Schalldämpfer-Kulissen.  Ganz abgesehen davon, daß die eigentliche Dämpfungswirkung des Schalls, für die der Schalldämpfer eigentlich ausgelegt ist, damit nicht erreicht werden kann.

Das selbst bei gleicher Kanalführung mit richtiger Anordnung von Leitblechen eine wesentliche Verbesserung erreicht werden kann, bewies dieser Verbesserungsvorschlag der Firma NECON InnoSys GmbH. Über die Folgen ihres Tuns machen sich Anlagenplaner meistens keine Gedanken. Im Gegenteil der Komponentenlieferant wird bei auftretenden Problemen zur Beseitigung der Mängel aufgefordert. Was Ursache und was Wirkung ist, läßt sich in einem Kunden- Lieferanten Verhältnis meist schwer klären. Deshalb möchte ich in dem HDT Seminar „VENTILATOREN – Systembetrachtung, Anlagenintegration und Akustik“ u.a. in einem Referat darauf hinweisen, welch enormer Einfluss und Einbußen der Energie-Effizienz derartig unüberlegtes Handeln bedeutet.
Schicken Sie mir Beispiele aus Ihren Anlagen und noch besser schicken Sie Ihre Anlagenplaner zum Seminar – wir möchten mit Ihnen über die Auswirkungen solchen Tuns diskutieren.

Nähere Informationen finden Sie unter;

Bypaßregelung die größte Energievernichtung

Im Rahmen meiner Beratungstätigkeiten zur Energieeinsparung von Prozeßventilatoren habe ich eine Situation vorgefunden, bei der eine einfache Umrüstung der Ventilatoren auf Drehzahlregelung keinen Erfolg gebracht hätte.

Bei der Auswertung der Daten für die mittlere Jahresauslastung der Anlage , stellte ich fest, dass trotz Teillast der Anlage die  3 Saugzüge der diversen Rauchgasreinigungsstufen in einer offenen Bypaßregelung betrieben wurden.

Hierdurch ziehen die Saugzüge soviel Rauchgasvolumen über den Bypaß zurück, wie diese in der Überwindung des mit höherem Volumen zum Quadrat steigenden Widerstand in der Anlage bedingt durch ihre Ventilatorkennlinien her schaffen. D.h. die Saugzüge wurden mit offenem Drallregler trotz Teillastbetrieb der Anlage betrieben und schafften noch nicht einmal den Auslegungsvolumenstrom durchzusetzen.

Bei dieser Anlagenkonstellation würde also auch eine Umrüstung von Drall- auf Drehzahlregelung keine Energieeinsparung bewirken, da die Saugzüge auch dann mit voller Drehzahl betrieben würden.

Ich habe dem Anlagenbetreiber deshalb vorgeschlagen zus. Klappen in die Bypaßstrecken einzubauen und diese soweit geschlossen zu halten, wie es verfahrenstechnisch für eine Mindestdurchflussmenge der einzelnen Filterstufen erforderlich ist. Anschließend die Saugzüge auf Drehzahlregelung umzurüsten.

Die sich durch diese Maßnahmen ergebenden Betriebspunkte auf den Kennlinien der Saugzüge ergeben dann eine Energie-Einsparung von ca. 68%.

Sollten drehzahlgeregelte Radialventilatoren Axialventilatoren mit im Lauf verstellbaren Schaufeln ablösen?

Bedingt durch die Tatsache, dass es bis etwa 2008 im Mittelspannungsbereich keine Frequenzumrichter auf dem Markt gab, die den Anforderungen der ZLU (Zusatz-Lieferbedingungen-Umrichter) der Kraftwerksbranche genügten, haben sich in der Vergangenheit immer mehr bei den Groß-Ventilatoren die Axialventilatoren mit im Lauf verstellbaren Schaufeln durchgesetzt.
Hiebei wurde aus energetischer Sicht gerne der Vergleich von Radialventilatoren mit Drallregelung gegenüber Axialventilatoren mit Laufschaufelverstellung angestellt, der dann besonders im Teillastbereich zu Gunsten der Axialventilatoren ausfiel.

Seit es aber auch im Mittel- bzw. Hochspannungsbereich Frequenzumrichter gibt die den Anforderungen der ZLU genügen, sollte der Vergleich eigentlich zwischen Radialventilatoren mit Drehzahlregelung gegenüber Axialventilatoren mit Laufschaufelverstellung angestellt werden.

In dem aufgezeigten Bild sind normiert einmal beide Kennlinien übereinander gelegt. Hierbei zeigt sich, dass bei den Kurven der Leistungsaufnahme im Teillastbereich der drehzahlgeregelte Radialventilator im Vorteil ist.

Wenn man dann noch bedenkt, dass der Axialventilator keinen hohen Regelbereich (Pumpgrenze) verträgt, was in Zeiten der Energiewende für unsere Kohlekraftwerke wichtig wäre, um einen störungsfreien Grundlastbetrieb absolvieren zu können, sollte eigentlich die Ablösung der Axialventilatoren im Kraftwerksbereich eine Überlegung wert sein. Ganz abgesehen davon, dass z.B. zwei doppelfutige drehzahlgeregelte Radialventilatoren weitere Vorteile bieten. Wie z.B. die Einbindung in eine strömungsgerechte vernünftige Anordnung hinter den meist vier Filterabgängen. Die Redundanz im Teillastbereich, bedenkenlose Regelbereiche von 1:10 und letztlich sogar die Anschaffungs- sowie die Wartungskosten.

Kombinierte Regelungsverfahren

Bevor jedoch bei all den positiven Aspekten für die Drehzahlregelung der Eindruck entsteht, dies sei die einzig empfehlenswerte Regelungskonzeption, soll nicht verschwiegen werden, dass es die berühmte Ausnahme gibt.

Bei all den bisher genannten Vorteilen der Drehzahlregelung wurde eine quadratische Anlagenkennlinie des Prozesses, in dem die Ventilatoren eingesetzt werden, vorausgesetzt.

Es gibt jedoch auch Anwendungsfälle, wie z.B. bei Anlagen mit Wirbelschichtfeuerungen, bei denen das Wirbelbett für die Verbrennungsluft einen konstanten Anteil auf hohem Widerstandsniveau über den Regelbereich aufweist und nur ein kleiner Anteil mit quadratischem Verhalten hinzukommt. Bei sehr kleinen Volumenströmen wird hier sogar aufgrund der zur Fluidisierung in der Wirbelbettkammer benötigten höheren Widerstände die Anlagenkennlinie noch ansteigen.

D.h. in der Summe kommt es zu einer sehr komplexen Anlagenkennlinie B, die von 0 in Richtung Auslegungspunkt BP_100% bei hohem
Widerstand beginnend erst abfällt, um anschließend wieder
anzusteigen.

Eine derartige Anlagenkennlinie kann, wie im Bild gezeigt, durch Drehzahlregelung nicht bzw. nur schlecht abgedeckt werden, da eine
Drehzahlabsenkung zur Abdeckung solcher Teillastpunkte im Regelbereich nur minimal, in dem dargestellten Beispiel nur zwischen 80 und 100% der Drehzahl möglich ist.

Bei derartigen Einsatzfällen würde man sicherlich im Normalfall eine Drallregelung empfehlen.

Andererseits sind gerade bei der Wirbelschichtfeuerung sehr hohe Drücke von 2000 daPa bis zu 3500 daPa und mehr erforderlich, was sich bei Betrieb mit Volumenstrommengen unter 30% mit einem Drallregler bei Drücken oberhalb 2500 daPa problematisch gestaltet. In diesem Bereich kommt es zu instationären Ablöseerscheinungen, durch Fehlströmungen an den strömungsführenden Teilen. Die Ablösungen verursachen in den Schaufelkanälen Wirbel, was dazu führen  kann, dass der Schaufelkanal durch Rückströmungen “verstopft,” d.h.  nicht befüllt wird. Durch die Rotation des Laufrades und die Interaktion der einzelnen  Schaufelkanäle wandert die Ablösung durch die Kanäle des Laufrades. Es tritt der sogenannte “rotating stall” auf.

Das Laufrad wird  dabei  starken wechselnden  Kräfte  ausgesetzt . Bei 3500 daPa, also 3,5 to pro m2 kann dies zu enormen Schäden am Laufzeug und der Lagerung führen, bis hin zur totalen Zerstörung der Gebläse.

In solchen Fällen, aber auch um das immer noch vorhandene Potential der Energieeinsparung im oberen Volumenstrombereich auszuschöpfen, besteht durchaus die Möglichkeit, die Drall- und die Drehzahlregelung zu kombinieren (siehe Bild).

Mit der Kombination der Drehzahl- und Drallregelung lässt sich einerseits im Bereich oberhalb 70% des Volumenstroms durchaus noch energiesparend mit Drehzahlregelung arbeiten. Vor allem aber wird im Teillastbereich bereits die Druckerhöhung auf unter 80% durch die Drehzahlregelung und damit in einen etwas verträglicheren Bereich abgesenkt, um so mit der Drallregelung auch Teillast-Volumenströme unter 30% ohne Schäden realisieren zu können.